16 research outputs found

    Accurate location estimation of moving object In Wireless Sensor network

    Get PDF
    One of the central issues in wirless sensor networks is track the location, of moving object which have overhead of saving data, an accurate estimation of the target location of object with energy constraint .We do not have any mechanism which control and maintain data .The wireless communication bandwidth is also very limited. Some field which is using this technique are flood and typhoon detection, forest fire detection, temperature and humidity and ones we have these information use these information back to a central air conditioning and ventilation. In this research paper, we propose protocol based on the prediction and adaptive based algorithm which is using less sensor node reduced by an accurate estimation of the target location. We had shown that our tracking method performs well in terms of energy saving regardless of mobility pattern of the mobile target. We extends the life time of network with less sensor node. Once a new object is detected, a mobile agent will be initiated to track the roaming path of the object

    Hybrid Model for Passive Locomotion Control of a Biped Humanoid:The Artificial Neural Network Approach

    Get PDF
    Developing a correct model for a biped robot locomotion is extremely challenging due to its inherently unstable structure because of the passive joint located at the unilateral foot-ground contact and varying configurations throughout the gait cycle, resulting variation of dynamic descriptions and control laws from phase to phase. The present research describes the development of a hybrid biped model using an Open Dynamics Engine (ODE) based analytical three link leg model as a base model and, on top of it, an Artificial Neural Network based learning model which ensures better adaptability, better limits cycle behaviors and better generalization while negotiating along a down slope. The base model has been configured according to the individual subjects and data have been collected using a novel technique through an android app from those subjects while walking down a slope. The pattern between the deviation of the actual trajectories and the base model generated trajectories has been found using a back propagation based artificial neural network architecture. It has been observed that this base model with learning based compensation enables the biped to better adapt in a real walking environment, showing better limit cycle behaviors. We also observed the bounded nature of deviation which led us to conclude that the strategy for biped locomotion control is generic in nature and largely dominated by learning

    A Fault-Tolerant Mobile Computing Model Based On Scalable Replica

    Get PDF
    The most frequent challenge faced by mobile user is stay connected with online data, while disconnected or poorly connected store the replica of critical data. Nomadic users require replication to store copies of critical data on their mobile machines. Existing replication services do not provide all classes of mobile users with the capabilities they require, which include: the ability for direct synchronization between any two replicas, support for large numbers of replicas, and detailed control over what files reside on their local (mobile) replica. Existing peer-to-peer solutions would enable direct communication, but suffers from dramatic scaling problems in the number of replicas, limiting the number of overall users and impacting performance. Roam is a replication system designed to satisfy the requirements of the mobile user. Roam is based on the Ward Model, replication architecture for mobile environments. Using the Ward Model and new distributed algorithms, Roam provides a scalable replication solution for the mobile user. We describe the motivation, design, and implementation of Roam and report its performance. Replication is extremely important in mobile environments because nomadic users require local copies of important data

    Accurate location estimation of moving object in wireless sensor network

    No full text
    One of the central issues in wirless sensor networks is track the location, of moving object which have overhead of saving data, an accurate estimation of the target location of object with energy constraint .We do not have any mechanism which control and maintain data .The wireless communication bandwidth is also very limited. Some field which is using this technique are flood and typhoon detection, forest fire detection, temperature and humidity and ones we have these information use these information back to a central air conditioning and ventilation. In this research paper, we propose protocol based on the prediction and adaptive based algorithm which is using less sensor node reduced by an accurate estimation of the target location. We had shown that our tracking method performs well in terms of energy saving regardless of mobility pattern of the mobile target. We extends the life time of network with less sensor node. Once a new object is detected, a mobile agent will be initiated to track the roaming path of the object
    corecore